177 lines
5.9 KiB
Python
177 lines
5.9 KiB
Python
#Some code from http://wiki.github.com/hoffstaetter/python-tesseract
|
|
|
|
import codecs
|
|
import os
|
|
import subprocess
|
|
import tempfile
|
|
import sys
|
|
|
|
from django.utils.translation import ugettext as _
|
|
from django.utils.importlib import import_module
|
|
|
|
from converter.api import convert
|
|
from documents.models import DocumentPage
|
|
|
|
from ocr.conf.settings import TESSERACT_PATH
|
|
from ocr.conf.settings import TESSERACT_LANGUAGE
|
|
from ocr.exceptions import TesseractError
|
|
from ocr.conf.settings import UNPAPER_PATH
|
|
from ocr.parsers import parse_document_page
|
|
from ocr.parsers.exceptions import ParserError, ParserUnknownFile
|
|
|
|
|
|
def get_language_backend():
|
|
"""
|
|
Return the OCR cleanup language backend using the selected tesseract
|
|
language in the configuration settings
|
|
"""
|
|
try:
|
|
module = import_module(u'.'.join([u'ocr', u'lang', TESSERACT_LANGUAGE]))
|
|
except ImportError:
|
|
sys.stderr.write(u'\nError: No OCR app language backend for language: %s\n\n' % TESSERACT_LANGUAGE)
|
|
return None
|
|
return module
|
|
|
|
language_backend = get_language_backend()
|
|
|
|
|
|
def cleanup(filename):
|
|
"""
|
|
Try to remove the given filename, ignoring non-existent files
|
|
"""
|
|
try:
|
|
os.remove(filename)
|
|
except OSError:
|
|
pass
|
|
|
|
|
|
def run_tesseract(input_filename, output_filename_base, lang=None):
|
|
"""
|
|
Execute the command line binary of tesseract
|
|
"""
|
|
command = [unicode(TESSERACT_PATH), unicode(input_filename), unicode(output_filename_base)]
|
|
if lang is not None:
|
|
command += [u'-l', lang]
|
|
|
|
proc = subprocess.Popen(command, close_fds=True, stderr=subprocess.PIPE, stdout=subprocess.PIPE)
|
|
return_code = proc.wait()
|
|
if return_code != 0:
|
|
error_text = proc.stderr.read()
|
|
raise TesseractError(error_text)
|
|
|
|
|
|
def do_document_ocr(document):
|
|
"""
|
|
first try to extract text from document pages using the registered
|
|
parser if the parser fails or if there is no parser registered for
|
|
the document mimetype do a visual OCR by calling tesseract
|
|
"""
|
|
for document_page in document.documentpage_set.all():
|
|
try:
|
|
# Try to extract text by means of a parser
|
|
parse_document_page(document_page)
|
|
except (ParserError, ParserUnknownFile):
|
|
# Fall back to doing visual OCR
|
|
pass
|
|
#desc, filepath = tempfile.mkstemp()
|
|
#imagefile = None
|
|
#source = u''
|
|
#imagefile = convert_document_for_ocr(document, page=document_page.page_number)
|
|
#run_tesseract(imagefile, filepath, TESSERACT_LANGUAGE)
|
|
#ocr_output = os.extsep.join([filepath, u'txt'])
|
|
#source = _(u'Text from OCR')
|
|
#f = codecs.open(ocr_output, 'r', 'utf-8')
|
|
#document_page.content = ocr_cleanup(f.read().strip())
|
|
#document_page.page_label = source
|
|
#document_page.save()
|
|
#f.close()
|
|
#cleanup(ocr_output)
|
|
#finally:
|
|
# pass
|
|
#os.close(desc)
|
|
#cleanup(filepath)
|
|
#if imagefile:
|
|
# cleanup(imagefile)
|
|
|
|
|
|
def ocr_cleanup(text):
|
|
"""
|
|
Cleanup the OCR's output passing it thru the selected language's
|
|
cleanup filter
|
|
"""
|
|
|
|
output = []
|
|
for line in text.splitlines():
|
|
line = line.strip()
|
|
for word in line.split():
|
|
if language_backend:
|
|
result = language_backend.check_word(word)
|
|
else:
|
|
result = word
|
|
if result:
|
|
output.append(result)
|
|
output.append(u'\n')
|
|
|
|
return u' '.join(output)
|
|
|
|
|
|
def clean_pages():
|
|
"""
|
|
Tool that executes the OCR cleanup code on all of the existing
|
|
documents
|
|
"""
|
|
for page in DocumentPage.objects.all():
|
|
if page.content:
|
|
page.content = ocr_cleanup(page.content)
|
|
page.save()
|
|
|
|
|
|
def execute_unpaper(input_filepath, output_filepath):
|
|
"""
|
|
Executes the program unpaper using subprocess's Popen
|
|
"""
|
|
command = []
|
|
command.append(UNPAPER_PATH)
|
|
command.append(u'--overwrite')
|
|
command.append(input_filepath)
|
|
command.append(output_filepath)
|
|
proc = subprocess.Popen(command, close_fds=True, stderr=subprocess.PIPE)
|
|
return_code = proc.wait()
|
|
if return_code != 0:
|
|
raise UnpaperError(proc.stderr.readline())
|
|
|
|
'''
|
|
def convert_document_for_ocr(document, page=DEFAULT_PAGE_NUMBER, file_format=DEFAULT_OCR_FILE_FORMAT):
|
|
#Extract document file
|
|
input_filepath = document_save_to_temp_dir(document, document.uuid)
|
|
|
|
#Convert for OCR
|
|
temp_filename, separator = os.path.splitext(os.path.basename(input_filepath))
|
|
temp_path = os.path.join(TEMPORARY_DIRECTORY, temp_filename)
|
|
transformation_output_file = u'%s_trans%s%s%s' % (temp_path, page, os.extsep, file_format)
|
|
unpaper_input_file = u'%s_unpaper_in%s%spnm' % (temp_path, page, os.extsep)
|
|
unpaper_output_file = u'%s_unpaper_out%s%spnm' % (temp_path, page, os.extsep)
|
|
convert_output_file = u'%s_ocr%s%s%s' % (temp_path, page, os.extsep, file_format)
|
|
|
|
try:
|
|
document_page = document.documentpage_set.get(page_number=page)
|
|
transformations, warnings = document_page.get_transformation_list()
|
|
|
|
#Apply default transformations
|
|
backend.convert_file(input_filepath=input_filepath, page=page, quality=QUALITY_HIGH, transformations=transformations, output_filepath=transformation_output_file)
|
|
#Do OCR operations
|
|
backend.convert_file(input_filepath=transformation_output_file, arguments=OCR_OPTIONS, output_filepath=unpaper_input_file)
|
|
# Process by unpaper
|
|
execute_unpaper(input_filepath=unpaper_input_file, output_filepath=unpaper_output_file)
|
|
# Convert to tif
|
|
backend.convert_file(input_filepath=unpaper_output_file, output_filepath=convert_output_file)
|
|
finally:
|
|
cleanup(transformation_output_file)
|
|
cleanup(unpaper_input_file)
|
|
cleanup(unpaper_output_file)
|
|
|
|
return convert_output_file
|
|
'''
|
|
|
|
|