#Some code from http://wiki.github.com/hoffstaetter/python-tesseract import codecs import os import subprocess import tempfile import sys from django.utils.translation import ugettext as _ from django.utils.importlib import import_module from converter.api import convert from documents.models import DocumentPage from ocr.conf.settings import TESSERACT_PATH from ocr.conf.settings import TESSERACT_LANGUAGE from ocr.exceptions import TesseractError from ocr.conf.settings import UNPAPER_PATH from ocr.parsers import parse_document_page from ocr.parsers.exceptions import ParserError, ParserUnknownFile def get_language_backend(): """ Return the OCR cleanup language backend using the selected tesseract language in the configuration settings """ try: module = import_module(u'.'.join([u'ocr', u'lang', TESSERACT_LANGUAGE])) except ImportError: sys.stderr.write(u'\nError: No OCR app language backend for language: %s\n\n' % TESSERACT_LANGUAGE) return None return module language_backend = get_language_backend() def cleanup(filename): """ Try to remove the given filename, ignoring non-existent files """ try: os.remove(filename) except OSError: pass def run_tesseract(input_filename, output_filename_base, lang=None): """ Execute the command line binary of tesseract """ command = [unicode(TESSERACT_PATH), unicode(input_filename), unicode(output_filename_base)] if lang is not None: command += [u'-l', lang] proc = subprocess.Popen(command, close_fds=True, stderr=subprocess.PIPE, stdout=subprocess.PIPE) return_code = proc.wait() if return_code != 0: error_text = proc.stderr.read() raise TesseractError(error_text) def do_document_ocr(document): """ first try to extract text from document pages using the registered parser if the parser fails or if there is no parser registered for the document mimetype do a visual OCR by calling tesseract """ for document_page in document.documentpage_set.all(): try: # Try to extract text by means of a parser parse_document_page(document_page) except (ParserError, ParserUnknownFile): # Fall back to doing visual OCR pass #desc, filepath = tempfile.mkstemp() #imagefile = None #source = u'' #imagefile = convert_document_for_ocr(document, page=document_page.page_number) #run_tesseract(imagefile, filepath, TESSERACT_LANGUAGE) #ocr_output = os.extsep.join([filepath, u'txt']) #source = _(u'Text from OCR') #f = codecs.open(ocr_output, 'r', 'utf-8') #document_page.content = ocr_cleanup(f.read().strip()) #document_page.page_label = source #document_page.save() #f.close() #cleanup(ocr_output) #finally: # pass #os.close(desc) #cleanup(filepath) #if imagefile: # cleanup(imagefile) def ocr_cleanup(text): """ Cleanup the OCR's output passing it thru the selected language's cleanup filter """ output = [] for line in text.splitlines(): line = line.strip() for word in line.split(): if language_backend: result = language_backend.check_word(word) else: result = word if result: output.append(result) output.append(u'\n') return u' '.join(output) def clean_pages(): """ Tool that executes the OCR cleanup code on all of the existing documents """ for page in DocumentPage.objects.all(): if page.content: page.content = ocr_cleanup(page.content) page.save() def execute_unpaper(input_filepath, output_filepath): """ Executes the program unpaper using subprocess's Popen """ command = [] command.append(UNPAPER_PATH) command.append(u'--overwrite') command.append(input_filepath) command.append(output_filepath) proc = subprocess.Popen(command, close_fds=True, stderr=subprocess.PIPE) return_code = proc.wait() if return_code != 0: raise UnpaperError(proc.stderr.readline()) ''' def convert_document_for_ocr(document, page=DEFAULT_PAGE_NUMBER, file_format=DEFAULT_OCR_FILE_FORMAT): #Extract document file input_filepath = document_save_to_temp_dir(document, document.uuid) #Convert for OCR temp_filename, separator = os.path.splitext(os.path.basename(input_filepath)) temp_path = os.path.join(TEMPORARY_DIRECTORY, temp_filename) transformation_output_file = u'%s_trans%s%s%s' % (temp_path, page, os.extsep, file_format) unpaper_input_file = u'%s_unpaper_in%s%spnm' % (temp_path, page, os.extsep) unpaper_output_file = u'%s_unpaper_out%s%spnm' % (temp_path, page, os.extsep) convert_output_file = u'%s_ocr%s%s%s' % (temp_path, page, os.extsep, file_format) try: document_page = document.documentpage_set.get(page_number=page) transformations, warnings = document_page.get_transformation_list() #Apply default transformations backend.convert_file(input_filepath=input_filepath, page=page, quality=QUALITY_HIGH, transformations=transformations, output_filepath=transformation_output_file) #Do OCR operations backend.convert_file(input_filepath=transformation_output_file, arguments=OCR_OPTIONS, output_filepath=unpaper_input_file) # Process by unpaper execute_unpaper(input_filepath=unpaper_input_file, output_filepath=unpaper_output_file) # Convert to tif backend.convert_file(input_filepath=unpaper_output_file, output_filepath=convert_output_file) finally: cleanup(transformation_output_file) cleanup(unpaper_input_file) cleanup(unpaper_output_file) return convert_output_file '''