Files
bootloader/apps/elftosb/common/SHA1.cpp
László Monda e6c1fce5b4 Add KBOOT.
2016-08-10 01:45:15 +02:00

362 lines
9.7 KiB
C++

/*
100% free public domain implementation of the SHA-1 algorithm
by Dominik Reichl <dominik.reichl@t-online.de>
Web: http://www.dominik-reichl.de/
Version 1.6 - 2005-02-07 (thanks to Howard Kapustein for patches)
- You can set the endianness in your files, no need to modify the
header file of the CSHA1 class any more
- Aligned data support
- Made support/compilation of the utility functions (ReportHash
and HashFile) optional (useful, if bytes count, for example in
embedded environments)
Version 1.5 - 2005-01-01
- 64-bit compiler compatibility added
- Made variable wiping optional (define SHA1_WIPE_VARIABLES)
- Removed unnecessary variable initializations
- ROL32 improvement for the Microsoft compiler (using _rotl)
======== Test Vectors (from FIPS PUB 180-1) ========
SHA1("abc") =
A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
SHA1("abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq") =
84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
SHA1(A million repetitions of "a") =
34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
*/
#include "SHA1.h"
#ifdef SHA1_UTILITY_FUNCTIONS
#define SHA1_MAX_FILE_BUFFER 8000
#endif
// Rotate x bits to the left
#ifndef ROL32
#ifdef _MSC_VER
#define ROL32(_val32, _nBits) _rotl(_val32, _nBits)
#else
#define ROL32(_val32, _nBits) (((_val32) << (_nBits)) | ((_val32) >> (32 - (_nBits))))
#endif
#endif
#ifdef SHA1_LITTLE_ENDIAN
#define SHABLK0(i) (m_block->l[i] = (ROL32(m_block->l[i], 24) & 0xFF00FF00) | (ROL32(m_block->l[i], 8) & 0x00FF00FF))
#else
#define SHABLK0(i) (m_block->l[i])
#endif
#define SHABLK(i) \
(m_block->l[i & 15] = ROL32( \
m_block->l[(i + 13) & 15] ^ m_block->l[(i + 8) & 15] ^ m_block->l[(i + 2) & 15] ^ m_block->l[i & 15], 1))
// SHA-1 rounds
#define _R0(v, w, x, y, z, i) \
{ \
z += ((w & (x ^ y)) ^ y) + SHABLK0(i) + 0x5A827999 + ROL32(v, 5); \
w = ROL32(w, 30); \
}
#define _R1(v, w, x, y, z, i) \
{ \
z += ((w & (x ^ y)) ^ y) + SHABLK(i) + 0x5A827999 + ROL32(v, 5); \
w = ROL32(w, 30); \
}
#define _R2(v, w, x, y, z, i) \
{ \
z += (w ^ x ^ y) + SHABLK(i) + 0x6ED9EBA1 + ROL32(v, 5); \
w = ROL32(w, 30); \
}
#define _R3(v, w, x, y, z, i) \
{ \
z += (((w | x) & y) | (w & x)) + SHABLK(i) + 0x8F1BBCDC + ROL32(v, 5); \
w = ROL32(w, 30); \
}
#define _R4(v, w, x, y, z, i) \
{ \
z += (w ^ x ^ y) + SHABLK(i) + 0xCA62C1D6 + ROL32(v, 5); \
w = ROL32(w, 30); \
}
CSHA1::CSHA1()
{
m_block = (SHA1_WORKSPACE_BLOCK *)m_workspace;
Reset();
}
CSHA1::~CSHA1()
{
Reset();
}
void CSHA1::Reset()
{
// SHA1 initialization constants
m_state[0] = 0x67452301;
m_state[1] = 0xEFCDAB89;
m_state[2] = 0x98BADCFE;
m_state[3] = 0x10325476;
m_state[4] = 0xC3D2E1F0;
m_count[0] = 0;
m_count[1] = 0;
}
void CSHA1::Transform(uint32_t *state, const uint8_t *buffer)
{
// Copy state[] to working vars
uint32_t a = state[0], b = state[1], c = state[2], d = state[3], e = state[4];
memcpy(m_block, buffer, 64);
// 4 rounds of 20 operations each. Loop unrolled.
_R0(a, b, c, d, e, 0);
_R0(e, a, b, c, d, 1);
_R0(d, e, a, b, c, 2);
_R0(c, d, e, a, b, 3);
_R0(b, c, d, e, a, 4);
_R0(a, b, c, d, e, 5);
_R0(e, a, b, c, d, 6);
_R0(d, e, a, b, c, 7);
_R0(c, d, e, a, b, 8);
_R0(b, c, d, e, a, 9);
_R0(a, b, c, d, e, 10);
_R0(e, a, b, c, d, 11);
_R0(d, e, a, b, c, 12);
_R0(c, d, e, a, b, 13);
_R0(b, c, d, e, a, 14);
_R0(a, b, c, d, e, 15);
_R1(e, a, b, c, d, 16);
_R1(d, e, a, b, c, 17);
_R1(c, d, e, a, b, 18);
_R1(b, c, d, e, a, 19);
_R2(a, b, c, d, e, 20);
_R2(e, a, b, c, d, 21);
_R2(d, e, a, b, c, 22);
_R2(c, d, e, a, b, 23);
_R2(b, c, d, e, a, 24);
_R2(a, b, c, d, e, 25);
_R2(e, a, b, c, d, 26);
_R2(d, e, a, b, c, 27);
_R2(c, d, e, a, b, 28);
_R2(b, c, d, e, a, 29);
_R2(a, b, c, d, e, 30);
_R2(e, a, b, c, d, 31);
_R2(d, e, a, b, c, 32);
_R2(c, d, e, a, b, 33);
_R2(b, c, d, e, a, 34);
_R2(a, b, c, d, e, 35);
_R2(e, a, b, c, d, 36);
_R2(d, e, a, b, c, 37);
_R2(c, d, e, a, b, 38);
_R2(b, c, d, e, a, 39);
_R3(a, b, c, d, e, 40);
_R3(e, a, b, c, d, 41);
_R3(d, e, a, b, c, 42);
_R3(c, d, e, a, b, 43);
_R3(b, c, d, e, a, 44);
_R3(a, b, c, d, e, 45);
_R3(e, a, b, c, d, 46);
_R3(d, e, a, b, c, 47);
_R3(c, d, e, a, b, 48);
_R3(b, c, d, e, a, 49);
_R3(a, b, c, d, e, 50);
_R3(e, a, b, c, d, 51);
_R3(d, e, a, b, c, 52);
_R3(c, d, e, a, b, 53);
_R3(b, c, d, e, a, 54);
_R3(a, b, c, d, e, 55);
_R3(e, a, b, c, d, 56);
_R3(d, e, a, b, c, 57);
_R3(c, d, e, a, b, 58);
_R3(b, c, d, e, a, 59);
_R4(a, b, c, d, e, 60);
_R4(e, a, b, c, d, 61);
_R4(d, e, a, b, c, 62);
_R4(c, d, e, a, b, 63);
_R4(b, c, d, e, a, 64);
_R4(a, b, c, d, e, 65);
_R4(e, a, b, c, d, 66);
_R4(d, e, a, b, c, 67);
_R4(c, d, e, a, b, 68);
_R4(b, c, d, e, a, 69);
_R4(a, b, c, d, e, 70);
_R4(e, a, b, c, d, 71);
_R4(d, e, a, b, c, 72);
_R4(c, d, e, a, b, 73);
_R4(b, c, d, e, a, 74);
_R4(a, b, c, d, e, 75);
_R4(e, a, b, c, d, 76);
_R4(d, e, a, b, c, 77);
_R4(c, d, e, a, b, 78);
_R4(b, c, d, e, a, 79);
// Add the working vars back into state
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
// Wipe variables
#ifdef SHA1_WIPE_VARIABLES
a = b = c = d = e = 0;
#endif
}
// Use this function to hash in binary data and strings
void CSHA1::Update(const uint8_t *data, uint32_t len)
{
uint32_t i, j;
j = (m_count[0] >> 3) & 63;
if ((m_count[0] += len << 3) < (len << 3))
m_count[1]++;
m_count[1] += (len >> 29);
if ((j + len) > 63)
{
i = 64 - j;
memcpy(&m_buffer[j], data, i);
Transform(m_state, m_buffer);
for (; i + 63 < len; i += 64)
Transform(m_state, &data[i]);
j = 0;
}
else
i = 0;
memcpy(&m_buffer[j], &data[i], len - i);
}
#ifdef SHA1_UTILITY_FUNCTIONS
// Hash in file contents
bool CSHA1::HashFile(char *szFileName)
{
unsigned long ulFileSize, ulRest, ulBlocks;
unsigned long i;
uint8_t uData[SHA1_MAX_FILE_BUFFER];
FILE *fIn;
if (szFileName == NULL)
return false;
fIn = fopen(szFileName, "rb");
if (fIn == NULL)
return false;
fseek(fIn, 0, SEEK_END);
ulFileSize = (unsigned long)ftell(fIn);
fseek(fIn, 0, SEEK_SET);
if (ulFileSize != 0)
{
ulBlocks = ulFileSize / SHA1_MAX_FILE_BUFFER;
ulRest = ulFileSize % SHA1_MAX_FILE_BUFFER;
}
else
{
ulBlocks = 0;
ulRest = 0;
}
for (i = 0; i < ulBlocks; i++)
{
fread(uData, 1, SHA1_MAX_FILE_BUFFER, fIn);
Update((uint8_t *)uData, SHA1_MAX_FILE_BUFFER);
}
if (ulRest != 0)
{
fread(uData, 1, ulRest, fIn);
Update((uint8_t *)uData, ulRest);
}
fclose(fIn);
fIn = NULL;
return true;
}
#endif
void CSHA1::Final()
{
uint32_t i;
uint8_t finalcount[8];
for (i = 0; i < 8; i++)
finalcount[i] = (uint8_t)((m_count[((i >= 4) ? 0 : 1)] >> ((3 - (i & 3)) * 8)) & 255); // Endian independent
Update((uint8_t *)"\200", 1);
while ((m_count[0] & 504) != 448)
Update((uint8_t *)"\0", 1);
Update(finalcount, 8); // Cause a SHA1Transform()
for (i = 0; i < 20; i++)
{
m_digest[i] = (uint8_t)((m_state[i >> 2] >> ((3 - (i & 3)) * 8)) & 255);
}
// Wipe variables for security reasons
#ifdef SHA1_WIPE_VARIABLES
i = 0;
memset(m_buffer, 0, 64);
memset(m_state, 0, 20);
memset(m_count, 0, 8);
memset(finalcount, 0, 8);
Transform(m_state, m_buffer);
#endif
}
#ifdef SHA1_UTILITY_FUNCTIONS
// Get the final hash as a pre-formatted string
void CSHA1::ReportHash(char *szReport, unsigned char uReportType)
{
unsigned char i;
char szTemp[16];
if (szReport == NULL)
return;
if (uReportType == REPORT_HEX)
{
sprintf(szTemp, "%02X", m_digest[0]);
strcat(szReport, szTemp);
for (i = 1; i < 20; i++)
{
sprintf(szTemp, " %02X", m_digest[i]);
strcat(szReport, szTemp);
}
}
else if (uReportType == REPORT_DIGIT)
{
sprintf(szTemp, "%u", m_digest[0]);
strcat(szReport, szTemp);
for (i = 1; i < 20; i++)
{
sprintf(szTemp, " %u", m_digest[i]);
strcat(szReport, szTemp);
}
}
else
strcpy(szReport, "Error: Unknown report type!");
}
#endif
// Get the raw message digest
void CSHA1::GetHash(uint8_t *puDest)
{
memcpy(puDest, m_digest, 20);
}