946 lines
28 KiB
C
946 lines
28 KiB
C
/*
|
|
* Copyright (c) 2015, Freescale Semiconductor, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification,
|
|
* are permitted provided that the following conditions are met:
|
|
*
|
|
* o Redistributions of source code must retain the above copyright notice, this list
|
|
* of conditions and the following disclaimer.
|
|
*
|
|
* o Redistributions in binary form must reproduce the above copyright notice, this
|
|
* list of conditions and the following disclaimer in the documentation and/or
|
|
* other materials provided with the distribution.
|
|
*
|
|
* o Neither the name of Freescale Semiconductor, Inc. nor the names of its
|
|
* contributors may be used to endorse or promote products derived from this
|
|
* software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
|
|
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
|
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "fsl_spi.h"
|
|
|
|
/*******************************************************************************
|
|
* Definitons
|
|
******************************************************************************/
|
|
/*! @brief SPI transfer state, which is used for SPI transactiaonl APIs' internal state. */
|
|
enum _spi_transfer_states_t
|
|
{
|
|
kSPI_Idle = 0x0, /*!< SPI is idle state */
|
|
kSPI_Busy /*!< SPI is busy tranferring data. */
|
|
};
|
|
|
|
/*! @brief Typedef for spi master interrupt handler. spi master and slave handle is the same. */
|
|
typedef void (*spi_isr_t)(SPI_Type *base, spi_master_handle_t *spiHandle);
|
|
|
|
/*******************************************************************************
|
|
* Prototypes
|
|
******************************************************************************/
|
|
/*!
|
|
* @brief Get the instance for SPI module.
|
|
*
|
|
* @param base SPI base address
|
|
*/
|
|
uint32_t SPI_GetInstance(SPI_Type *base);
|
|
|
|
/*!
|
|
* @brief Sends a buffer of data bytes in non-blocking way.
|
|
*
|
|
* @param base SPI base pointer
|
|
* @param buffer The data bytes to send
|
|
* @param size The number of data bytes to send
|
|
*/
|
|
static void SPI_WriteNonBlocking(SPI_Type *base, uint8_t *buffer, size_t size);
|
|
|
|
/*!
|
|
* @brief Receive a buffer of data bytes in non-blocking way.
|
|
*
|
|
* @param base SPI base pointer
|
|
* @param buffer The data bytes to send
|
|
* @param size The number of data bytes to send
|
|
*/
|
|
static void SPI_ReadNonBlocking(SPI_Type *base, uint8_t *buffer, size_t size);
|
|
|
|
/*!
|
|
* @brief Send a piece of data for SPI.
|
|
*
|
|
* This function computes the number of data to be written into D register or Tx FIFO,
|
|
* and write the data into it. At the same time, this function updates the values in
|
|
* master handle structure.
|
|
*
|
|
* @param handle Pointer to SPI master handle structure.
|
|
*/
|
|
static void SPI_SendTransfer(SPI_Type *base, spi_master_handle_t *handle);
|
|
|
|
/*!
|
|
* @brief Receive a piece of data for SPI master.
|
|
*
|
|
* This function computes the number of data to receive from D register or Rx FIFO,
|
|
* and write the data to destination address. At the same time, this function updates
|
|
* the values in master handle structure.
|
|
*
|
|
* @param handle Pointer to SPI master handle structure.
|
|
*/
|
|
static void SPI_ReceiveTransfer(SPI_Type *base, spi_master_handle_t *handle);
|
|
/*******************************************************************************
|
|
* Variables
|
|
******************************************************************************/
|
|
/*! @brief SPI internal handle pointer array */
|
|
static spi_master_handle_t *s_spiHandle[FSL_FEATURE_SOC_SPI_COUNT];
|
|
/*! @brief Base pointer array */
|
|
static SPI_Type *const s_spiBases[] = SPI_BASE_PTRS;
|
|
/*! @brief IRQ name array */
|
|
static const IRQn_Type s_spiIRQ[] = SPI_IRQS;
|
|
/*! @brief Clock array name */
|
|
static const clock_ip_name_t s_spiClock[] = SPI_CLOCKS;
|
|
|
|
/*! @brief Pointer to master IRQ handler for each instance. */
|
|
static spi_isr_t s_spiIsr;
|
|
|
|
/*******************************************************************************
|
|
* Code
|
|
******************************************************************************/
|
|
uint32_t SPI_GetInstance(SPI_Type *base)
|
|
{
|
|
uint32_t instance;
|
|
|
|
/* Find the instance index from base address mappings. */
|
|
for (instance = 0; instance < FSL_FEATURE_SOC_SPI_COUNT; instance++)
|
|
{
|
|
if (s_spiBases[instance] == base)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
assert(instance < FSL_FEATURE_SOC_SPI_COUNT);
|
|
|
|
return instance;
|
|
}
|
|
|
|
static void SPI_WriteNonBlocking(SPI_Type *base, uint8_t *buffer, size_t size)
|
|
{
|
|
uint32_t i = 0;
|
|
uint8_t bytesPerFrame = 1U;
|
|
|
|
#if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && FSL_FEATURE_SPI_16BIT_TRANSFERS
|
|
/* Check if 16 bits or 8 bits */
|
|
bytesPerFrame = ((base->C2 & SPI_C2_SPIMODE_MASK) >> SPI_C2_SPIMODE_SHIFT) + 1U;
|
|
#endif
|
|
|
|
while (i < size)
|
|
{
|
|
if (buffer != NULL)
|
|
{
|
|
#if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && FSL_FEATURE_SPI_16BIT_TRANSFERS
|
|
/*16 bit mode*/
|
|
if (base->C2 & SPI_C2_SPIMODE_MASK)
|
|
{
|
|
base->DL = *buffer++;
|
|
base->DH = *buffer++;
|
|
}
|
|
/* 8 bit mode */
|
|
else
|
|
{
|
|
base->DL = *buffer++;
|
|
}
|
|
#else
|
|
base->D = *buffer++;
|
|
#endif /* FSL_FEATURE_SPI_16BIT_TRANSFERS */
|
|
}
|
|
/* Send dummy data */
|
|
else
|
|
{
|
|
SPI_WriteData(base, SPI_DUMMYDATA);
|
|
}
|
|
i += bytesPerFrame;
|
|
}
|
|
}
|
|
|
|
static void SPI_ReadNonBlocking(SPI_Type *base, uint8_t *buffer, size_t size)
|
|
{
|
|
uint32_t i = 0;
|
|
uint8_t bytesPerFrame = 1U;
|
|
|
|
#if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && FSL_FEATURE_SPI_16BIT_TRANSFERS
|
|
/* Check if 16 bits or 8 bits */
|
|
bytesPerFrame = ((base->C2 & SPI_C2_SPIMODE_MASK) >> SPI_C2_SPIMODE_SHIFT) + 1U;
|
|
#endif
|
|
|
|
while (i < size)
|
|
{
|
|
if (buffer != NULL)
|
|
{
|
|
#if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && FSL_FEATURE_SPI_16BIT_TRANSFERS
|
|
/*16 bit mode*/
|
|
if (base->C2 & SPI_C2_SPIMODE_MASK)
|
|
{
|
|
*buffer++ = base->DL;
|
|
*buffer++ = base->DH;
|
|
}
|
|
/* 8 bit mode */
|
|
else
|
|
{
|
|
*buffer++ = base->DL;
|
|
}
|
|
#else
|
|
*buffer++ = base->D;
|
|
#endif /* FSL_FEATURE_SPI_16BIT_TRANSFERS */
|
|
}
|
|
else
|
|
{
|
|
SPI_ReadData(base);
|
|
}
|
|
i += bytesPerFrame;
|
|
}
|
|
}
|
|
|
|
static void SPI_SendTransfer(SPI_Type *base, spi_master_handle_t *handle)
|
|
{
|
|
uint8_t bytes = MIN((handle->watermark * 2U), handle->txRemainingBytes);
|
|
|
|
/* Read S register and ensure SPTEF is 1, otherwise the write would be ignored. */
|
|
if (handle->watermark == 1U)
|
|
{
|
|
if (bytes != 0U)
|
|
{
|
|
bytes = handle->bytePerFrame;
|
|
}
|
|
|
|
/* Send data */
|
|
if (base->C1 & SPI_C1_MSTR_MASK)
|
|
{
|
|
/* As a master, only write once */
|
|
if (base->S & SPI_S_SPTEF_MASK)
|
|
{
|
|
SPI_WriteNonBlocking(base, handle->txData, bytes);
|
|
/* Update handle information */
|
|
if (handle->txData)
|
|
{
|
|
handle->txData += bytes;
|
|
}
|
|
handle->txRemainingBytes -= bytes;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* As a slave, send data until SPTEF cleared */
|
|
while ((base->S & SPI_S_SPTEF_MASK) && (handle->txRemainingBytes > 0))
|
|
{
|
|
SPI_WriteNonBlocking(base, handle->txData, bytes);
|
|
|
|
/* Update handle information */
|
|
if (handle->txData)
|
|
{
|
|
handle->txData += bytes;
|
|
}
|
|
handle->txRemainingBytes -= bytes;
|
|
}
|
|
}
|
|
}
|
|
|
|
#if defined(FSL_FEATURE_SPI_HAS_FIFO) && (FSL_FEATURE_SPI_HAS_FIFO)
|
|
/* If use FIFO */
|
|
else
|
|
{
|
|
if (base->S & SPI_S_TNEAREF_MASK)
|
|
{
|
|
SPI_WriteNonBlocking(base, handle->txData, bytes);
|
|
|
|
/* Update handle information */
|
|
if (handle->txData)
|
|
{
|
|
handle->txData += bytes;
|
|
}
|
|
handle->txRemainingBytes -= bytes;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void SPI_ReceiveTransfer(SPI_Type *base, spi_master_handle_t *handle)
|
|
{
|
|
uint8_t bytes = MIN((handle->watermark * 2U), handle->rxRemainingBytes);
|
|
uint8_t val = 1U;
|
|
|
|
/* Read S register and ensure SPRF is 1, otherwise the write would be ignored. */
|
|
if (handle->watermark == 1U)
|
|
{
|
|
val = base->S & SPI_S_SPRF_MASK;
|
|
if (bytes != 0U)
|
|
{
|
|
bytes = handle->bytePerFrame;
|
|
}
|
|
}
|
|
|
|
if (val)
|
|
{
|
|
SPI_ReadNonBlocking(base, handle->rxData, bytes);
|
|
|
|
/* Update information in handle */
|
|
if (handle->rxData)
|
|
{
|
|
handle->rxData += bytes;
|
|
}
|
|
handle->rxRemainingBytes -= bytes;
|
|
}
|
|
}
|
|
|
|
void SPI_MasterGetDefaultConfig(spi_master_config_t *config)
|
|
{
|
|
config->enableMaster = true;
|
|
config->enableStopInWaitMode = false;
|
|
config->polarity = kSPI_ClockPolarityActiveHigh;
|
|
config->phase = kSPI_ClockPhaseFirstEdge;
|
|
config->direction = kSPI_MsbFirst;
|
|
|
|
#if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && FSL_FEATURE_SPI_16BIT_TRANSFERS
|
|
config->dataMode = kSPI_8BitMode;
|
|
#endif /* FSL_FEATURE_SPI_16BIT_TRANSFERS */
|
|
|
|
#if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO
|
|
config->txWatermark = kSPI_TxFifoOneHalfEmpty;
|
|
config->rxWatermark = kSPI_RxFifoOneHalfFull;
|
|
#endif /* FSL_FEATURE_SPI_HAS_FIFO */
|
|
|
|
config->pinMode = kSPI_PinModeNormal;
|
|
config->outputMode = kSPI_SlaveSelectAutomaticOutput;
|
|
config->baudRate_Bps = 500000U;
|
|
}
|
|
|
|
void SPI_MasterInit(SPI_Type *base, const spi_master_config_t *config, uint32_t srcClock_Hz)
|
|
{
|
|
assert(config && srcClock_Hz);
|
|
|
|
/* Open clock gate for SPI and open interrupt */
|
|
CLOCK_EnableClock(s_spiClock[SPI_GetInstance(base)]);
|
|
|
|
/* Disable SPI before configuration */
|
|
base->C1 &= ~SPI_C1_SPE_MASK;
|
|
|
|
/* Configure clock polarity and phase, set SPI to master */
|
|
base->C1 = SPI_C1_MSTR(1U) | SPI_C1_CPOL(config->polarity) | SPI_C1_CPHA(config->phase) |
|
|
SPI_C1_SSOE(config->outputMode & 1U) | SPI_C1_LSBFE(config->direction);
|
|
|
|
/* Set data mode, and also pin mode and mode fault settings */
|
|
#if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && FSL_FEATURE_SPI_16BIT_TRANSFERS
|
|
base->C2 = SPI_C2_MODFEN(config->outputMode >> 1U) | SPI_C2_BIDIROE(config->pinMode >> 1U) |
|
|
SPI_C2_SPISWAI(config->enableStopInWaitMode) | SPI_C2_SPC0(config->pinMode & 1U) |
|
|
SPI_C2_SPIMODE(config->dataMode);
|
|
#else
|
|
base->C2 = SPI_C2_MODFEN(config->outputMode >> 1U) | SPI_C2_BIDIROE(config->pinMode >> 1U) |
|
|
SPI_C2_SPISWAI(config->enableStopInWaitMode) | SPI_C2_SPC0(config->pinMode & 1U);
|
|
#endif /* FSL_FEATURE_SPI_16BIT_TRANSFERS */
|
|
|
|
/* Set watermark, FIFO is enabled */
|
|
#if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO
|
|
if (FSL_FEATURE_SPI_FIFO_SIZEn(base) != 0)
|
|
{
|
|
base->C3 = SPI_C3_TNEAREF_MARK(config->txWatermark) | SPI_C3_RNFULLF_MARK(config->rxWatermark) |
|
|
SPI_C3_INTCLR(0U) | SPI_C3_FIFOMODE(1U);
|
|
}
|
|
#endif /* FSL_FEATURE_SPI_HAS_FIFO */
|
|
|
|
/* Set baud rate */
|
|
SPI_MasterSetBaudRate(base, config->baudRate_Bps, srcClock_Hz);
|
|
|
|
/* Enable SPI */
|
|
if (config->enableMaster)
|
|
{
|
|
base->C1 |= SPI_C1_SPE_MASK;
|
|
}
|
|
}
|
|
|
|
void SPI_SlaveGetDefaultConfig(spi_slave_config_t *config)
|
|
{
|
|
config->enableSlave = true;
|
|
config->polarity = kSPI_ClockPolarityActiveHigh;
|
|
config->phase = kSPI_ClockPhaseFirstEdge;
|
|
config->direction = kSPI_MsbFirst;
|
|
config->enableStopInWaitMode = false;
|
|
|
|
#if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && FSL_FEATURE_SPI_16BIT_TRANSFERS
|
|
config->dataMode = kSPI_8BitMode;
|
|
#endif /* FSL_FEATURE_SPI_16BIT_TRANSFERS */
|
|
|
|
#if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO
|
|
config->txWatermark = kSPI_TxFifoOneHalfEmpty;
|
|
config->rxWatermark = kSPI_RxFifoOneHalfFull;
|
|
#endif /* FSL_FEATURE_SPI_HAS_FIFO */
|
|
}
|
|
|
|
void SPI_SlaveInit(SPI_Type *base, const spi_slave_config_t *config)
|
|
{
|
|
assert(config);
|
|
|
|
/* Open clock gate for SPI and open interrupt */
|
|
CLOCK_EnableClock(s_spiClock[SPI_GetInstance(base)]);
|
|
|
|
/* Disable SPI before configuration */
|
|
base->C1 &= ~SPI_C1_SPE_MASK;
|
|
|
|
/* Configure master and clock polarity and phase */
|
|
base->C1 =
|
|
SPI_C1_MSTR(0U) | SPI_C1_CPOL(config->polarity) | SPI_C1_CPHA(config->phase) | SPI_C1_LSBFE(config->direction);
|
|
|
|
/* Configure data mode if needed */
|
|
#if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && FSL_FEATURE_SPI_16BIT_TRANSFERS
|
|
base->C2 = SPI_C2_SPIMODE(config->dataMode) | SPI_C2_SPISWAI(config->enableStopInWaitMode);
|
|
#else
|
|
base->C2 = SPI_C2_SPISWAI(config->enableStopInWaitMode);
|
|
#endif /* FSL_FEATURE_SPI_16BIT_TRANSFERS */
|
|
|
|
/* Set watermark */
|
|
#if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO
|
|
if (FSL_FEATURE_SPI_FIFO_SIZEn(base) != 0U)
|
|
{
|
|
base->C3 = SPI_C3_TNEAREF_MARK(config->txWatermark) | SPI_C3_RNFULLF_MARK(config->rxWatermark) |
|
|
SPI_C3_INTCLR(0U) | SPI_C3_FIFOMODE(1U);
|
|
}
|
|
#endif /* FSL_FEATURE_SPI_HAS_FIFO */
|
|
|
|
/* Enable SPI */
|
|
if (config->enableSlave)
|
|
{
|
|
base->C1 |= SPI_C1_SPE_MASK;
|
|
}
|
|
}
|
|
|
|
void SPI_Deinit(SPI_Type *base)
|
|
{
|
|
/* Disable SPI module before shutting down */
|
|
base->C1 &= ~SPI_C1_SPE_MASK;
|
|
|
|
/* Gate the clock */
|
|
CLOCK_DisableClock(s_spiClock[SPI_GetInstance(base)]);
|
|
}
|
|
|
|
uint32_t SPI_GetStatusFlags(SPI_Type *base)
|
|
{
|
|
#if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO
|
|
if (FSL_FEATURE_SPI_FIFO_SIZEn(base) != 0)
|
|
{
|
|
return ((base->S) | (((uint32_t)base->CI) << 8U));
|
|
}
|
|
else
|
|
{
|
|
return (base->S);
|
|
}
|
|
#else
|
|
return (base->S);
|
|
#endif /* FSL_FEATURE_SPI_HAS_FIFO */
|
|
}
|
|
|
|
void SPI_EnableInterrupts(SPI_Type *base, uint32_t mask)
|
|
{
|
|
/* Rx full interrupt */
|
|
if (mask & kSPI_RxFullAndModfInterruptEnable)
|
|
{
|
|
base->C1 |= SPI_C1_SPIE_MASK;
|
|
}
|
|
|
|
/* Tx empty interrupt */
|
|
if (mask & kSPI_TxEmptyInterruptEnable)
|
|
{
|
|
base->C1 |= SPI_C1_SPTIE_MASK;
|
|
}
|
|
|
|
/* Data match interrupt */
|
|
if (mask & kSPI_MatchInterruptEnable)
|
|
{
|
|
base->C2 |= SPI_C2_SPMIE_MASK;
|
|
}
|
|
|
|
/* FIFO related interrupts */
|
|
#if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO
|
|
if (FSL_FEATURE_SPI_FIFO_SIZEn(base) != 0)
|
|
{
|
|
/* Rx FIFO near full interrupt */
|
|
if (mask & kSPI_RxFifoNearFullInterruptEnable)
|
|
{
|
|
base->C3 |= SPI_C3_RNFULLIEN_MASK;
|
|
}
|
|
|
|
/* Tx FIFO near empty interrupt */
|
|
if (mask & kSPI_TxFifoNearEmptyInterruptEnable)
|
|
{
|
|
base->C3 |= SPI_C3_TNEARIEN_MASK;
|
|
}
|
|
}
|
|
#endif /* FSL_FEATURE_SPI_HAS_FIFO */
|
|
}
|
|
|
|
void SPI_DisableInterrupts(SPI_Type *base, uint32_t mask)
|
|
{
|
|
/* Rx full interrupt */
|
|
if (mask & kSPI_RxFullAndModfInterruptEnable)
|
|
{
|
|
base->C1 &= (~SPI_C1_SPIE_MASK);
|
|
}
|
|
|
|
/* Tx empty interrupt */
|
|
if (mask & kSPI_TxEmptyInterruptEnable)
|
|
{
|
|
base->C1 &= (~SPI_C1_SPTIE_MASK);
|
|
}
|
|
|
|
/* Data match interrupt */
|
|
if (mask & kSPI_MatchInterruptEnable)
|
|
{
|
|
base->C2 &= (~SPI_C2_SPMIE_MASK);
|
|
}
|
|
|
|
#if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO
|
|
if (FSL_FEATURE_SPI_FIFO_SIZEn(base) != 0)
|
|
{
|
|
/* Rx FIFO near full interrupt */
|
|
if (mask & kSPI_RxFifoNearFullInterruptEnable)
|
|
{
|
|
base->C3 &= ~SPI_C3_RNFULLIEN_MASK;
|
|
}
|
|
|
|
/* Tx FIFO near empty interrupt */
|
|
if (mask & kSPI_TxFifoNearEmptyInterruptEnable)
|
|
{
|
|
base->C3 &= ~SPI_C3_TNEARIEN_MASK;
|
|
}
|
|
}
|
|
#endif /* FSL_FEATURE_SPI_HAS_FIFO */
|
|
}
|
|
|
|
void SPI_MasterSetBaudRate(SPI_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)
|
|
{
|
|
uint32_t prescaler;
|
|
uint32_t bestPrescaler;
|
|
uint32_t rateDivisor;
|
|
uint32_t bestDivisor;
|
|
uint32_t rateDivisorValue;
|
|
uint32_t realBaudrate;
|
|
uint32_t diff;
|
|
uint32_t min_diff;
|
|
uint32_t freq = baudRate_Bps;
|
|
|
|
/* Find combination of prescaler and scaler resulting in baudrate closest to the requested value */
|
|
min_diff = 0xFFFFFFFFU;
|
|
|
|
/* Set the maximum divisor bit settings for each of the following divisors */
|
|
bestPrescaler = 7U;
|
|
bestDivisor = 8U;
|
|
|
|
/* In all for loops, if min_diff = 0, the exit for loop*/
|
|
for (prescaler = 0; (prescaler <= 7) && min_diff; prescaler++)
|
|
{
|
|
/* Initialize to div-by-2 */
|
|
rateDivisorValue = 2U;
|
|
|
|
for (rateDivisor = 0; (rateDivisor <= 8U) && min_diff; rateDivisor++)
|
|
{
|
|
/* Calculate actual baud rate, note need to add 1 to prescaler */
|
|
realBaudrate = ((srcClock_Hz) / ((prescaler + 1) * rateDivisorValue));
|
|
|
|
/* Calculate the baud rate difference based on the conditional statement ,that states that the
|
|
calculated baud rate must not exceed the desired baud rate */
|
|
if (freq >= realBaudrate)
|
|
{
|
|
diff = freq - realBaudrate;
|
|
if (min_diff > diff)
|
|
{
|
|
/* A better match found */
|
|
min_diff = diff;
|
|
bestPrescaler = prescaler;
|
|
bestDivisor = rateDivisor;
|
|
}
|
|
}
|
|
|
|
/* Multiply by 2 for each iteration, possible divisor values: 2, 4, 8, 16, ... 512 */
|
|
rateDivisorValue *= 2U;
|
|
}
|
|
}
|
|
|
|
/* Write the best prescalar and baud rate scalar */
|
|
base->BR = SPI_BR_SPR(bestDivisor) | SPI_BR_SPPR(bestPrescaler);
|
|
}
|
|
|
|
void SPI_WriteBlocking(SPI_Type *base, uint8_t *buffer, size_t size)
|
|
{
|
|
uint32_t i = 0;
|
|
uint8_t bytesPerFrame = 1U;
|
|
|
|
#if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && FSL_FEATURE_SPI_16BIT_TRANSFERS
|
|
/* Check if 16 bits or 8 bits */
|
|
bytesPerFrame = ((base->C2 & SPI_C2_SPIMODE_MASK) >> SPI_C2_SPIMODE_SHIFT) + 1U;
|
|
#endif
|
|
|
|
while (i < size)
|
|
{
|
|
while ((base->S & SPI_S_SPTEF_MASK) == 0)
|
|
{
|
|
}
|
|
|
|
/* Send a frame of data */
|
|
SPI_WriteNonBlocking(base, buffer, bytesPerFrame);
|
|
|
|
i += bytesPerFrame;
|
|
buffer += bytesPerFrame;
|
|
}
|
|
}
|
|
|
|
#if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO
|
|
void SPI_EnableFIFO(SPI_Type *base, bool enable)
|
|
{
|
|
if (FSL_FEATURE_SPI_FIFO_SIZEn(base) != 0U)
|
|
{
|
|
if (enable)
|
|
{
|
|
base->C3 |= SPI_C3_FIFOMODE_MASK;
|
|
}
|
|
else
|
|
{
|
|
base->C3 &= ~SPI_C3_FIFOMODE_MASK;
|
|
}
|
|
}
|
|
}
|
|
#endif /* FSL_FEATURE_SPI_HAS_FIFO */
|
|
|
|
void SPI_WriteData(SPI_Type *base, uint16_t data)
|
|
{
|
|
#if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && (FSL_FEATURE_SPI_16BIT_TRANSFERS)
|
|
base->DL = data & 0xFFU;
|
|
base->DH = (data >> 8U) & 0xFFU;
|
|
#else
|
|
base->D = data & 0xFFU;
|
|
#endif
|
|
}
|
|
|
|
uint16_t SPI_ReadData(SPI_Type *base)
|
|
{
|
|
uint16_t val = 0;
|
|
#if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && (FSL_FEATURE_SPI_16BIT_TRANSFERS)
|
|
val = base->DL;
|
|
val |= (uint16_t)((uint16_t)(base->DH) << 8U);
|
|
#else
|
|
val = base->D;
|
|
#endif
|
|
return val;
|
|
}
|
|
|
|
status_t SPI_MasterTransferBlocking(SPI_Type *base, spi_transfer_t *xfer)
|
|
{
|
|
assert(xfer);
|
|
|
|
uint8_t bytesPerFrame = 1U;
|
|
|
|
/* Check if the argument is legal */
|
|
if ((xfer->txData == NULL) && (xfer->rxData == NULL))
|
|
{
|
|
return kStatus_InvalidArgument;
|
|
}
|
|
|
|
#if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && FSL_FEATURE_SPI_16BIT_TRANSFERS
|
|
/* Check if 16 bits or 8 bits */
|
|
bytesPerFrame = ((base->C2 & SPI_C2_SPIMODE_MASK) >> SPI_C2_SPIMODE_SHIFT) + 1U;
|
|
#endif
|
|
|
|
/* Disable SPI and then enable it, this is used to clear S register */
|
|
base->C1 &= ~SPI_C1_SPE_MASK;
|
|
base->C1 |= SPI_C1_SPE_MASK;
|
|
|
|
#if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO
|
|
|
|
/* Disable FIFO, as the FIFO may cause data loss if the data size is not integer
|
|
times of 2bytes. As SPI cannot set watermark to 0, only can set to 1/2 FIFO size or 3/4 FIFO
|
|
size. */
|
|
if (FSL_FEATURE_SPI_FIFO_SIZEn(base) != 0)
|
|
{
|
|
base->C3 &= ~SPI_C3_FIFOMODE_MASK;
|
|
}
|
|
|
|
#endif /* FSL_FEATURE_SPI_HAS_FIFO */
|
|
|
|
/* Begin the polling transfer until all data sent */
|
|
while (xfer->dataSize > 0)
|
|
{
|
|
/* Data send */
|
|
while ((base->S & SPI_S_SPTEF_MASK) == 0U)
|
|
{
|
|
}
|
|
SPI_WriteNonBlocking(base, xfer->txData, bytesPerFrame);
|
|
if (xfer->txData)
|
|
{
|
|
xfer->txData += bytesPerFrame;
|
|
}
|
|
|
|
while ((base->S & SPI_S_SPRF_MASK) == 0U)
|
|
{
|
|
}
|
|
SPI_ReadNonBlocking(base, xfer->rxData, bytesPerFrame);
|
|
if (xfer->rxData)
|
|
{
|
|
xfer->rxData += bytesPerFrame;
|
|
}
|
|
|
|
/* Decrease the number */
|
|
xfer->dataSize -= bytesPerFrame;
|
|
}
|
|
|
|
return kStatus_Success;
|
|
}
|
|
|
|
void SPI_MasterTransferCreateHandle(SPI_Type *base,
|
|
spi_master_handle_t *handle,
|
|
spi_master_callback_t callback,
|
|
void *userData)
|
|
{
|
|
assert(handle);
|
|
|
|
uint8_t instance = SPI_GetInstance(base);
|
|
|
|
/* Initialize the handle */
|
|
s_spiHandle[instance] = handle;
|
|
handle->callback = callback;
|
|
handle->userData = userData;
|
|
s_spiIsr = SPI_MasterTransferHandleIRQ;
|
|
|
|
#if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO
|
|
uint8_t txSize = 0U;
|
|
/* Get the number to be sent if there is FIFO */
|
|
if (FSL_FEATURE_SPI_FIFO_SIZEn(base) != 0)
|
|
{
|
|
txSize = (base->C3 & SPI_C3_TNEAREF_MARK_MASK) >> SPI_C3_TNEAREF_MARK_SHIFT;
|
|
if (txSize == 0U)
|
|
{
|
|
handle->watermark = FSL_FEATURE_SPI_FIFO_SIZEn(base) * 3U / 4U;
|
|
}
|
|
else
|
|
{
|
|
handle->watermark = FSL_FEATURE_SPI_FIFO_SIZEn(base) / 2U;
|
|
}
|
|
}
|
|
/* If no FIFO, just set the watermark to 1 */
|
|
else
|
|
{
|
|
handle->watermark = 1U;
|
|
}
|
|
#else
|
|
handle->watermark = 1U;
|
|
#endif /* FSL_FEATURE_SPI_HAS_FIFO */
|
|
|
|
/* Get the bytes per frame */
|
|
#if defined(FSL_FEATURE_SPI_16BIT_TRANSFERS) && (FSL_FEATURE_SPI_16BIT_TRANSFERS)
|
|
handle->bytePerFrame = ((base->C2 & SPI_C2_SPIMODE_MASK) >> SPI_C2_SPIMODE_SHIFT) + 1U;
|
|
#else
|
|
handle->bytePerFrame = 1U;
|
|
#endif
|
|
|
|
/* Enable SPI NVIC */
|
|
EnableIRQ(s_spiIRQ[instance]);
|
|
}
|
|
|
|
status_t SPI_MasterTransferNonBlocking(SPI_Type *base, spi_master_handle_t *handle, spi_transfer_t *xfer)
|
|
{
|
|
assert(handle && xfer);
|
|
|
|
/* Check if SPI is busy */
|
|
if (handle->state == kSPI_Busy)
|
|
{
|
|
return kStatus_SPI_Busy;
|
|
}
|
|
|
|
/* Check if the input arguments valid */
|
|
if (((xfer->txData == NULL) && (xfer->rxData == NULL)) || (xfer->dataSize == 0U))
|
|
{
|
|
return kStatus_InvalidArgument;
|
|
}
|
|
|
|
/* Set the handle information */
|
|
handle->txData = xfer->txData;
|
|
handle->rxData = xfer->rxData;
|
|
handle->transferSize = xfer->dataSize;
|
|
handle->txRemainingBytes = xfer->dataSize;
|
|
handle->rxRemainingBytes = xfer->dataSize;
|
|
|
|
/* Set the SPI state to busy */
|
|
handle->state = kSPI_Busy;
|
|
|
|
/* Disable SPI and then enable it, this is used to clear S register*/
|
|
base->C1 &= ~SPI_C1_SPE_MASK;
|
|
base->C1 |= SPI_C1_SPE_MASK;
|
|
|
|
/* Enable Interrupt, only enable Rx interrupt, use rx interrupt to driver SPI transfer */
|
|
#if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO
|
|
if (handle->watermark > 1U)
|
|
{
|
|
/* Enable Rx near full interrupt */
|
|
SPI_EnableInterrupts(base, kSPI_RxFifoNearFullInterruptEnable);
|
|
}
|
|
else
|
|
{
|
|
SPI_EnableInterrupts(base, kSPI_RxFullAndModfInterruptEnable);
|
|
}
|
|
#else
|
|
SPI_EnableInterrupts(base, kSPI_RxFullAndModfInterruptEnable);
|
|
#endif
|
|
|
|
/* First send a piece of data to Tx Data or FIFO to start a SPI transfer */
|
|
SPI_SendTransfer(base, handle);
|
|
|
|
return kStatus_Success;
|
|
}
|
|
|
|
status_t SPI_MasterTransferGetCount(SPI_Type *base, spi_master_handle_t *handle, size_t *count)
|
|
{
|
|
assert(handle);
|
|
|
|
status_t status = kStatus_Success;
|
|
|
|
if (handle->state != kStatus_SPI_Busy)
|
|
{
|
|
status = kStatus_NoTransferInProgress;
|
|
}
|
|
else
|
|
{
|
|
/* Return remaing bytes in different cases */
|
|
if (handle->rxData)
|
|
{
|
|
*count = handle->transferSize - handle->rxRemainingBytes;
|
|
}
|
|
else
|
|
{
|
|
*count = handle->transferSize - handle->txRemainingBytes;
|
|
}
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
void SPI_MasterTransferAbort(SPI_Type *base, spi_master_handle_t *handle)
|
|
{
|
|
assert(handle);
|
|
|
|
/* Stop interrupts */
|
|
#if defined(FSL_FEATURE_SPI_HAS_FIFO) && FSL_FEATURE_SPI_HAS_FIFO
|
|
if (handle->watermark > 1U)
|
|
{
|
|
SPI_DisableInterrupts(base, kSPI_RxFifoNearFullInterruptEnable | kSPI_RxFullAndModfInterruptEnable);
|
|
}
|
|
else
|
|
{
|
|
SPI_DisableInterrupts(base, kSPI_RxFullAndModfInterruptEnable);
|
|
}
|
|
#else
|
|
SPI_DisableInterrupts(base, kSPI_RxFullAndModfInterruptEnable);
|
|
#endif
|
|
|
|
/* Transfer finished, set the state to Done*/
|
|
handle->state = kSPI_Idle;
|
|
|
|
/* Clear the internal state */
|
|
handle->rxRemainingBytes = 0;
|
|
handle->txRemainingBytes = 0;
|
|
}
|
|
|
|
void SPI_MasterTransferHandleIRQ(SPI_Type *base, spi_master_handle_t *handle)
|
|
{
|
|
assert(handle);
|
|
|
|
/* If needs to receive data, do a receive */
|
|
if (handle->rxRemainingBytes)
|
|
{
|
|
SPI_ReceiveTransfer(base, handle);
|
|
}
|
|
|
|
/* We always need to send a data to make the SPI run */
|
|
if (handle->txRemainingBytes)
|
|
{
|
|
SPI_SendTransfer(base, handle);
|
|
}
|
|
|
|
/* All the transfer finished */
|
|
if ((handle->txRemainingBytes == 0) && (handle->rxRemainingBytes == 0))
|
|
{
|
|
/* Complete the transfer */
|
|
SPI_MasterTransferAbort(base, handle);
|
|
|
|
if (handle->callback)
|
|
{
|
|
(handle->callback)(base, handle, kStatus_SPI_Idle, handle->userData);
|
|
}
|
|
}
|
|
}
|
|
|
|
void SPI_SlaveTransferCreateHandle(SPI_Type *base,
|
|
spi_slave_handle_t *handle,
|
|
spi_slave_callback_t callback,
|
|
void *userData)
|
|
{
|
|
assert(handle);
|
|
|
|
/* Slave create handle share same logic with master create handle, the only difference
|
|
is the Isr pointer. */
|
|
SPI_MasterTransferCreateHandle(base, handle, callback, userData);
|
|
s_spiIsr = SPI_SlaveTransferHandleIRQ;
|
|
}
|
|
|
|
void SPI_SlaveTransferHandleIRQ(SPI_Type *base, spi_slave_handle_t *handle)
|
|
{
|
|
assert(handle);
|
|
|
|
/* Do data send first in case of data missing. */
|
|
if (handle->txRemainingBytes)
|
|
{
|
|
SPI_SendTransfer(base, handle);
|
|
}
|
|
|
|
/* If needs to receive data, do a receive */
|
|
if (handle->rxRemainingBytes)
|
|
{
|
|
SPI_ReceiveTransfer(base, handle);
|
|
}
|
|
|
|
/* All the transfer finished */
|
|
if ((handle->txRemainingBytes == 0) && (handle->rxRemainingBytes == 0))
|
|
{
|
|
/* Complete the transfer */
|
|
SPI_SlaveTransferAbort(base, handle);
|
|
|
|
if (handle->callback)
|
|
{
|
|
(handle->callback)(base, handle, kStatus_SPI_Idle, handle->userData);
|
|
}
|
|
}
|
|
}
|
|
|
|
#if defined(SPI0)
|
|
void SPI0_DriverIRQHandler(void)
|
|
{
|
|
assert(s_spiHandle[0]);
|
|
s_spiIsr(SPI0, s_spiHandle[0]);
|
|
}
|
|
#endif
|
|
|
|
#if defined(SPI1)
|
|
void SPI1_DriverIRQHandler(void)
|
|
{
|
|
assert(s_spiHandle[1]);
|
|
s_spiIsr(SPI1, s_spiHandle[1]);
|
|
}
|
|
#endif
|
|
|
|
#if defined(SPI2)
|
|
void SPI2_DriverIRQHandler(void)
|
|
{
|
|
assert(s_spiHandle[2]);
|
|
s_spiIsr(SPI0, s_spiHandle[2]);
|
|
}
|
|
#endif
|